Rooted forests that avoid sets of permutations
نویسندگان
چکیده
منابع مشابه
Sharply $(n-2)$-transitive Sets of Permutations
Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...
متن کاملOn Reductions to Sets that Avoid EXPSPACE
A set B is called EXPSPACE-avoiding, if every subset of B in EXPSPACE is sparse. For example, sets of high information density (called HIGH sets in 5]) are shown to be EXPSPACE-avoiding. Investigating the complexity of sets A in EXPSPACE that honestly reduce to EXPSPACE-avoiding sets, we show that if the reducibility used has a property, called range-constructibility, then A must also reduce to...
متن کاملEnumerating Permutations that Avoid Three Term Arithmetic Progressions
It is proved that the number of permutations of the set {1, 2, 3, . . . , n} that avoid three term arithmetic progressions is at most (2.7) n 21 for n ≥ 11 and at each end of any such permutation, at least ⌊ 2 ⌋−6 entries have the same parity.
متن کاملSets of permutations that generate the symmetric group pairwise
The paper contains proofs of the following results. For all sufficiently large odd integers n, there exists a set of 2n−1 permutations that pairwise generate the symmetric group Sn. There is no set of 2n−1 + 1 permutations having this property. For all sufficiently large integers n with n≡ 2 mod 4, there exists a set of 2n−2 even permutations that pairwise generate the alternating group An. The...
متن کاملSemi-balanced Partitions of Two Sets of Points and Embeddings of Rooted Forests
Let m be a positive integer and let R1, R2 and B be three disjoint sets of points in the plane such that no three points of R1 ∪ R2 ∪ B lie on the same line and |B| = (m−1)|R1|+m|R2|. Put g = |R1∪R2|. Then there exists a subdivision X1∪X2∪· · ·∪Xg of the plane into g disjoint convex polygons such that (i) |Xi ∩ (R1 ∪ R2)| = 1 for all 1 ≤ i ≤ g; and (ii) |Xi ∩B| = m−1 if |Xi ∩R1| = 1, and |Xi ∩B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2019
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2018.10.004